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We analyze the macroscopic deformation of a polycrystalline solid due to local deformation events
in the core of grain boundaries. The central result is an equation that decomposes the effective
macroscopic strain into contributions from three deformation modes, namely i) the elastic strain
in the bulk of the crystallites, ii) the results of dislocation glide and climb processes, and iii) the
deformation of events in the grain boundary core. The latter process is represented by jumps in the
displacement vector field that can be decomposed into tangential (’slip’) and normal (’stretch’) com-
ponents. The relevant measure for the grain-boundary mediated deformation is not the displacement
jump vector but a grain boundary discontinuity tensor that depends on the displacement jump and
on the orientation of the grain boundary normal. Accommodation processes at triple junctions do
not contribute significantly to the macroscopic strain. By means of example, the theory is applied
to the effective elastic response of nanocrystalline materials with an excess slip compliance at grain
boundaries. The predictions, specifically on the size-dependence of the Poisson ratio, agree with
recent experiments on nanocrystalline Pd. The value of the slip compliance for grain boundaries in
Pd is obtained as 18pm/GPa.

I. INTRODUCTION

It is widely accepted that the mechanisms of plastic de-
formation of materials with a nanoscale grain size differ
from those of conventional, coarse-grained polycrystals
[1–3]. Since the stress which is required to activate dis-
location plasticity increases with decreasing grain size,
one may suspect that dislocation glide or climb becomes
marginal in the limit of very small grains. Conversely, the
abundance of grain boundaries in nanocrystalline mate-
rials suggest that local deformation events in the core of
grain boundaries evolve as a relevant deformation mech-
anism.
Indeed, the signatures of grain boundary sliding and

grain rotation have been identified in experiment and in
atomistic simulation. The lack of deformation texture
in nanocrystalline metals testifies to grain rotation pro-
moted by sliding [4], and that same process is directly
observed in computer simulation [5, 6]. Furthermore, re-
cent experiments point towards an elastic shear softening
of grain boundary regions [7], again in agreement with
atomistic simulation [8–10]. The finding suggests that
boundaries may deform elastically by shear in their tan-
gent plane. This deformation mode would be the equiva-
lent to grain boundary sliding, yet it involves the regime
of elastic instead of plastic deformation. Besides sim-
ple grain boundary sliding, recent research highlights the
coupling between tangential shear and grain boundary
migration [11, 12]. This ’coupled motion’ is apparent
in experiments with bicrystals [13, 14] and has also been
identified in atomistic studies of nanocrystal deformation
[15, 16].
While there is ample evidence for the presence of grain

boundary sliding in nanocrystalline material deforma-
tion, dislocation plasticity is widely recognized to remain

a relevant contribution, at the very least in its property
as an accommodation process for grain-boundary medi-
ated processes. In fact, experimental evidence for dislo-
cation generation and twinning [17–19] is in good agree-
ment with direct observation of dislocation nucleation
and glide in computer simulation [20].

The state of the art is thus that the plasticity of
nanocrystalline metals involves local deformation events
at grain boundaries along with lattice dislocation activ-
ity. In the elastic regime at small stress, an excess of
compliance, possibly in shear, may contribute to the ef-
fective macroscopic response to load along with the con-
ventional bulk elastic deformation. These observations
suggest the obvious question, how can the relative con-
tributions of the bulk- and grain boundary processes to
the overall deformation be quantified?

Studies using atomistic simulation have analyzed sep-
arately the deformation due to dislocation plasticity and
the total macroscopic deformation, finding large differ-
ences that points towards a significant contribution of
grain-boundary sliding [6, 21]. Yet, a direct and quan-
titative investigation of the role of sliding has not been
forthcoming for lack of a kinematic theory linking local
sliding and macroscopic strain. Here, we derive this the-
ory.

Figure 1 is a schematic illustration of grain boundary
mediated deformation of a polycrystal for the example
of shearing. In an idealized brick-wall microstructure –
made out of identical rectangular grains of size L (top
row in the figure) – a conceivable deformation mode in-
volves uniform slip by the distance τ along sets of copla-
nar boundaries. This would result in a net macroscopic
shear in the order of τ/L. Yet, the analogous process in
a realistic polycrystalline microstructure (bottom row in
Fig. 1) is more complex. It is liable to involve nonuniform
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FIG. 1. Schematic illustration of polycrystal deformation me-
diated by grain boundary processes. Top row shows shear by
grain boundary sliding or shear in an idealized brick model of
a polycrystal. The macroscopic shear is in the order of slip
distance, τ , over grain size, L. Bottom row shows realistic
polycrystalline microstructure. Grain boundary deformation
may be tangential as well as perpendicular to the boundary
plane. These events occur on boundaries oriented at arbi-
trary angles to the macroscopic shear stress or strain. Fur-
thermore, stress concentrations – for instance at triple lines –
call for accommodation by elastic or plastic bulk deformation.
It is then not obvious how the local deformation events relate
to the macroscopic strain. Lines across grain boundaries are
markers showing local slip.

slip on boundaries oriented at arbitrary angles relative to
the macroscopic stress or strain direction, along with pos-
sible out-of-plane deformation modes. Furthermore, in-
compatibilities at triple lines require accommodation by
elastic or plastic deformation of the bulk. Given this gen-
eral deformation mode, the questions at hand are twofold.
First, what is a suitable measure for the local deforma-
tion at a grain boundary? Second, if the values of this
deformation variable are known everywhere on the grain
boundary network along with the complete information
on bulk strain as well as bulk dislocation movement, how
can one compute the macroscopic strain?
Our analysis of the above issues starts out with consid-

erations (in Section 2) on the kinematics of grain bound-
ary deformation. We then investigate the roles of elastic
accommodation (Section 3) and of dislocation plasticity
in the bulk (Section 4). In order to illustrate the appli-
cation of our theory to experiment, we inspect (Section
5) a toy model for interfacial excess elasticity that can be
compared to experimental data [7] for the effective elastic

behavior of nanocrystalline Pd.

II. KINEMATICS

A. Geometry and definitions

We consider a polycrystalline solid body B (Figure 2)
consisting of a space-filling array of crystallites (grains)
Cj . We take B to be bounded by the external surface S,
and we denote the internal interfaces (grain boundaries)
between grains j and k by Gjk. We adopt a small-strain
continuum description in which the deformation relative
to a reference configuration is embodied in a displace-
ment vector field u(r) where r is a position vector in B.
The macroscopic deformation is represented by the dis-
placements on the external surface, which we denote by
uS(rS). The subscript denotes values defined on S. The

FIG. 2. Part a), schematic illustration of the body B with
external surface S. Part b) illustrates grain structure and no-
tation for external surface, Sj , of grain j and grain boundary
Gjk joining grains j and k.

location of the interfaces is considered stationary in refer-
ence coordinates; this excludes grain boundary migration
from our analysis.

Let us start out by taking u(r) was a continuous dis-
placement field. Then uS is related to the displacement
gradient–as represented by the second rank tensor ∇u–in
the bulk via the divergence law [22]

∫
S
uS ⊗ ndA = ∫

B
∇udV , (1)

where n(rS) represents the outer surface normal and ⊗
refers to the Kronecker product (see Appendix for tensor
notation). Even though we allow for quantities such as
n, u, ∇u to depend on position, we suppress the display
of the position variable in the equations for brevity.

The antisymmetric part of Equation (1) represents a
rigid body rotation which does not involve strain. We
will here focus on the symmetric part,

1

2
∫
S
(uS ⊗ n + n⊗ uS)dA = ∫

B
EdV , (2)

where E denotes the strain, E = 1
2
(∇u+∇uT) with the su-

perscript ’T’ denoting transposition. The left-hand side



3

of Eq. (2) defines an effective macroscopic strain tensor,
Eeff , via

Eeff =
1

2V
∫
S
(uS ⊗ n + n⊗ uS)dA . (3)

When the deformation is continuous in the bulk, then
Eq. (2) shows that Eeff as measured by the surface dis-
placements agrees with the volume-average of the strain
E in the bulk.

B. Displacement jump

Let us now allow for discontinuity of the displacement
at grain boundaries. We shall initially ignore disloca-
tion activity, so that u(r) remains continuous within each
grain. Equation (1) can then be applied separately to
each grain j:

∑
k
∫
Gjk

uGjk
⊗ njkdA + ∫

Sj

uSj ⊗ njdA

= ∫
Cj

∇udV . (4)

The terms on the left-hand side account for the displace-
ments, uGjk

and uSj , along the individual grain bound-
aries Gjk with the neighboring grains k as well as–where
applicable–the displacements on an intersection, Sj, of
the grain with the external surface. Figure 3 illustrates
the definition of uGjk

as the limiting value of u as the
boundary between grains j and k is approached from
within grain j.
In Eq. (4), the njk represent the outer normal of the

grain boundary jk as seen from within grain j. For use
below we note that, as a consequence of this notation, we
have

njk = −nkj (5)

everywhere on the grain boundary Gjk.
Next, we consider the sum of expressions such as Eq.

(4) over all grains:

∑
j,k
∫
Gjk

uGjk
⊗ njkdA +∑

j
∫
Sj

uSj ⊗ njdA

=∑
j
∫
Cj

∇udV . (6)

Each grain boundary is counted twice in this sum, once as
Gjk and once as Gkj . It is convenient to introduce a new
notation were boundaries – labelled by l – are counted
only once. Furthermore, we account for Eq. (5) and we
further simplify Eq. (6) by noting that the summation
over the Sj gives S and the summation over the Cj gives
B. We thus obtain

∑
l
∫
Gl

−[u]Gl
⊗ nldA + ∫

S
uS ⊗ ndA = ∫

B
∇udV (7)

with the following notation: Let Gl denote the grain
boundary denoted by Gjk and Gjk in our earlier notation.

grain 2grain 1

r
G

[u]u
G

12

u
G

21

u

r

FIG. 3. Schematic illustration of the variation of displace-
ment, u, (solid graph) with position, r, in the vicinity of a
grain boundary. The terms uG12 and uG21 denote the lim-
iting value of the displacement as the boundary–located at
position rG–is approached from within grains 1 and 2, respec-
tively. The displacement jump is denoted by [u].

Without lack of generality we orient that grain boundary
by setting nl as the outward normal as seen from grain
j. In other words, nl = njk. Then

[u]Gl
(rGl
) = uGkj

(rGl
) − uGjk

(rGl
) (8)

is the displacement jump across Gl at position rGl
on Gl.

Jumps in the displacement at the grain boundaries are
a central concept in our theory. They embody the fact
that the limiting values of u at position rGl

on Gl dif-
fer depending on whether r is approached from within
crystallite Cj or from its neighbor, crystallite Ck. This is
illustrated in Fig. 3.

Figure 4 reproduces a graph from Ref. [23] that illus-
trates the decomposition of [u] into a normal part and a
tangential part:

[u] = τ + εn . (9)

The magnitude, ε, of the normal part of [u] represents
the stretch, a change in grain boundary excess free vol-
ume by deformation of the matter in the grain boundary
core along the boundary normal. The tangential compo-
nent, τ , of [u] is the slip of Ref.[23], a vector that quanti-
fies the local magnitude and direction of grain boundary
sliding.

In an atomistic description of grain boundary defor-
mation one wishes to distinguish the regimes of elastic
and plastic deformation. With regard to tangential de-
formation, we may admit an excess shear compliance at
the boundary in the elastic regime. This deformation
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FIG. 4. Schematic illustration of the interfacial deformation
modes stretch (a) and slip (b) that give rise to displacement
jumps.

mode would break no interatomic bonds and it might en-
tail a reversible (e.g., linear) variation of slip with stress.
By contrast, plastic deformation–in other words, grain
boundary sliding–may change the interatomic coordina-
tion and will not generally display a reversible slip-stress
law. Our continuum description in terms of displacement
jumps does not discriminate between the two types of
atomic-level processes. Small (’elastic’) and large (’plas-
tic’) shear events both map into a jump discontinuity
of the displacement field. Thus, we use the term ’slip’
equally for both types of processes.

C. Grain boundary discontinuity tensor

When searching for a parameter that describes the lo-
cal deformation at grain boundaries in the context of
polycrystal deformation, one notes that the sign of [u]Gl

depends on the orientation of the normal, outward as seen
from grain j or outward as seen from grain k. Since that
orientation can be chosen arbitrarily, [u]Gl

alone is not a
useful variable for grain boundary deformation. However,
one can readily verify that the quantities [u]Gl

⊗ nl are
invariant with respect to choice of the orientation of the
normal. Here, we find it useful to describe the displace-
ment jump in terms of the discontinuity tensor, which we
introduce as

Dl =
1

2
([u]Gl

⊗ nl + nl ⊗ [u]Gl
) . (10)

By using the identities given in the Appendix, one ob-
tains useful results for D. Let us first note that the dis-
placement jump can be decomposed into slip and stretch
through

τ = P ⋅ [u] , ε = n ⋅ [u] , (11)

where P denotes the projection tensor for the grain
boundary plane (cf. Appendix). The equivalent rela-
tions, which retrieve slip and stretch from D, are

τ = 2P ⋅D ⋅ n , ε = tr(D) . (12)

Along with Eqs. (3) and (7), the definition of D (Eq.
(10)) suggests that the macroscopic strain depends on D

via

Eeff =
1

VB
(∫

B
EdV +∑

l
∫
Gl

DdA) . (13)

Conceptually, we may want to think of the individual
grain boundary sliding and stretching events as rigid
body displacements of the neighboring grains relative to
each other. This concept can be reconciled with the
nonuniform nature of the displacement jump when we
re-write Eq. (13) in terms of averages:

Eeff = ⟨E⟩B +
1

VB
∑
l

Al⟨D⟩Gl
. (14)

The averages ⟨D⟩Gl
in that equation reduce to exact val-

ues of the discontinuity tensor in the limit where the
displacement jump is uniform on a planar boundary l, as
in rigid body sliding.

A special case of Eq. (14), which describes the contri-
bution of stretch to the net volume change, is obtained
by taking the trace of the equation and by accounting for
the fact that tr(E) = ∆V /V in the bulk along with Eq.
(12) for the grain boundaries:

∆V = VB⟨tr(E)⟩B +∑
l

Al⟨ε⟩Gl
. (15)

This embodies the additivity of the volume changes in
the bulk and at the interfaces.

III. STRESS AND MECHANICAL
EQUILIBRIUM

Deformation by grain boundary sliding leads to incom-
patibilities at triple junctions that need to be removed by
crystal plasticity or by elastic deformation. As we shall
find in this Section, the strain fields associated with elas-
tic accommodation do not contribute significantly to the
overall macroscopic strain. This follows from a balance
of stress law that will now be derived.

A. External work of deformation

We start out by analyzing the total externalmechanical
work of deformation, which is the work done against the
traction force field, t(xS), on the surface:

δWext = ∫
S
δu ⋅ tdA . (16)

Let us restrict attention to traction that can be generated
from a uniform effective external stress, t(x) = Sext ⋅n(x)
with Sext a symmetric second rank tensor. For instance,
Sext may represent the uniaxial stress in an experimental
tension or compression test. Then, using Eq. (7), along
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with Eq. (A1) from the Appendix, Eq. (16) can be re-
expressed as

δWext = Sext ∶ ∫
Sl

(δu⊗ n)dA

= Sext ∶ (∑
l
∫
Gl

[u]Gl
⊗ nldA + ∫

B
∇udV ) .(17)

Since we took Sext as symmetric, we may equivalently
write

δWext = Sext ∶∑
l
∫
Gl

DGl
dA + Sext ∶ ∫

B
EdV . (18)

B. Constitutive equations and local equilibrium
conditions

In order to introduce the notion of internal stress, con-
sider free energy densities Ψ (per volume) and ψ (per
area) for bulk and surface or interface, respectively, so
that the net free energy of a body B with surface S and
internal interfaces Gl is

δF = ∫
B
ΨdV + ∫

S
ψdA +∑

l
∫
Gl

ψdA . (19)

Gurtin et al. [23] have shown that appropriate con-
stitutive equations for solids with ’deformable’ inter-
faces – where displacement jumps are permitted – are
Ψ = Ψ(E, r) and ψ = ψ(E,H, [u], rS). The mean tangen-
tial strain, E, and the relative displacement gradient, H,
are defined as follows: Let EGjk

and ∇uGjk
be the limits

of E and of ∇u as the boundary between grains j and k
is approached from inside grain j. Then

E = 1

2
P(EGjk

+EGkj
)P . (20)

H = (∇uGjk
−∇uGkj

)P . (21)

Furthermore [23],

dΨ = S ∶ dE , dψ = S ∶ dE +K ∶ dH + s ⋅ d[u] , (22)

where S, S, K, and s denote the bulk stress tensor,
two surface stress tensors, and a vector quantity that
is energy-conjugate to [u]. For use below we note that,
since S and E are tangential superficial tensors, it follows
that [23]

S ∶ dE = S ∶ dE . (23)

The relevant equilibrium conditions are [23]

divS = 0 (24)

for the bulk, along with the two relations for the interface,

[Sn] + divSS = 0 (25)

and

jSon + divSK − s = 0 . (26)

By divS we denote the surface divergence operator on G;
jSo refers to the mean of the limiting values of the bulk
stress tensors on the two sides of the interface.

The surface stress S represents the tendency of a sur-
face or of an internal interface to compress or expand the
bulk crystal lattice. This quantity has been well studied
for free surfaces [24, 25], and first results for grain bound-
aries are available [26, 27]. A second surface stress, K,
relates to a dependency of the the superficial free en-
ergy density on differences in the strain in the two crys-
tals abutting at the common interface. While this phe-
nomenon has been discussed since early work by Herring
[28], few data from experiment or atomistic simulation
has been forthcoming [29–31]. The paucity of data for K
indicates that the quantity is of little relevance for real
materials under presently accessible experimental condi-
tions. In the following, we shall neglect the dependency of
ψ on H. More precisely, we shall take divGK as negligible.
This approximation is improved when K is small and/or
the grain boundaries have a small curvature. Then, Eq.
(26) simplifies to

jSon = s . (27)

At this point it is noted that, at any given position in
the interface (cf. Eq. (A1)),

s ⋅ d[u] = (jSon) ⋅ d[u] = jSo ∶ dD . (28)

This implies that the superficial free energy density may
here be taken as ψ = ψ(E,D), with

δψ = S ∶ δE + jSo ∶ δD . (29)

In other words, the energy-conjugate quantity to the dis-
continuity tensor is the mean of the bulk stresses on the
two sides of the interface.

So far, the considerations in this subsection were fo-
cussed on internal interfaces. At the external surface,
we do not consider displacement jumps. We may then
describe the superficial energy by the function ψ(E, rS)
with dψ = SdE.

C. Balance law

In terms of the above definitions, a variational state-
ment for the change, δF , of the net free energy (in other
words, the reversible part of the work of deformation) is

δF = ∫
B
S ∶ δEdV + ∫

S
S ∶ δEdA

+∑
l
∫
Gl

(S ∶ δE + jSo ∶ δD)dA . (30)

with the equilibrium condition

δF − δWext = 0. (31)



6

By substituting Eqs. (17), (30) and (27), and account-
ing for Eq. (23), Eq. (31) is converted into

0 = ∫
B
(S − Sext) ∶ δEdV + ∫

S
S ∶ δEdA

+∑
l
∫
Gl

(S ∶ δE + (jSo − Sext) ∶ δD)dA . (32)

At equilibrium, this statement must hold for arbitrary
deformation fields and, therefore, in particular for all
smooth displacement fields that represent uniform strains
δE0 and vanishing displacement jump. Here, Eq. (32)
takes on the simple form

0 = ∫
B
(S − Sext)dV ∶ δE0 + ∫

S
SdA ∶ δE0

+∑
l
∫
Gl

SdA ∶ δE0 . (33)

Since this condition must hold for arbitrary values of δE0,
it follows that

0 = ∫
B
(S − Sext)dV + ∫

S
SdA +∑

l
∫
Gl

SdA . (34)

Equation (33) is a generalization of the capillary equa-
tion for solids from Ref. [32] to solids with interfaces that
can suffer displacement jumps and to nonhydrostatic ex-
ternal load. The important message is that the balance
equation continues to hold even when the interfaces ex-
hibit the extra degree of freedom of stretch and slip. It is
emphasized that empirical values of S are such that the
surface stress term has a significant impact exclusively for
materials which are extremely small-grained, with grain
sizes well below 10 nm [26, 27]. Thus, the mean stress in
the bulk is simply governed by the external stress. For a
linear elastic material, this means that the mean strain
in the bulk is also governed by Sext. In other words,
the stress- and strain fields that are prompted by elastic
accommodation will not significantly contribute to the
macroscopic strain.
In response to changes of the external load, solids will

typically undergo transient or sustained plastic deforma-
tion, including grain boundary sliding and stretch. The
material is then not at equilibrium. Yet, since mechani-
cal equilibrium is established at the speed of sound, Eq.
(33) will hold to reasonable approximation unless the
deformation is extremely fast. Her again, we conclude
that stress and strain from elastic accommodation repre-
sent internal heterogeneities that do not contribute sig-
nificantly to the macroscopic deformation.

IV. RELATION TO DISLOCATION
PLASTICITY

Dislocation plasticity is readily incorporated into our
analysis. We have considered grain boundary sliding and
stretching in terms of relative displacements of the two
crystals abutting on a grain boundary. Similarly, the

movement of a dislocation displaces the regions of crys-
tal on the two adjacent sides of the glide or climb plane
by the Burgers vector, b. This process leaves behind a
surface which is not necessarily a lattice defect but which
exhibits a displacement jump, [u] = −b [33, 34].

To quantify the above notion of dislocation plasticity,
consider a straight segment Dm of a dislocation which
is characterized by the Burgers vector bm and the line
vector lm [34]. We take the line vector as parallel to the
line and of magnitude equal to the line length. When
Dm moves by the distance δs normal to lm, then a dis-
placement jump of value bl is left behind in the plane
containing lm and δs. The area swept by the dislocation
in that plane is obtained as the magnitude, δAm, of the
vector

δAm = lm × δs . (35)

The normal to the plane is the unit vector along δAm.
This implies that the contribution, DmδAm, of the local
deformation event in question to the net deformation can
be expressed as

DmδAm =
1

2
(bm ⊗ (lm × δs) + (lm × δs)⊗ bm) . (36)

In order to obtain the net deformation due to all glide
and climb events of all dislocation segments, we sum over
all segments:

δEdis
eff =

1

VB
∑
m

DmδAm . (37)

This equation is formally similar to Eq. (14). In the gen-
eral case of simultaneous deformation by bulk elasticity,
grain boundary processes, and bulk dislocation plasticity
the right-hand side terms of both equations are additive.

As a consistency check one can verify (Appendix B)
that the work done by an external stress against the
strain δEdis

eff in Eq. (37) agrees with the work done against
the Peach-Köhler forces.

V. A TOY MODEL FOR THE EFFECTIVE
ELASTIC RESPONSE OF NANOCRYSTALLINE

SOLIDS

A. Model

In this section we present an example for the applica-
tion of our theory to the deformation of nanocystalline
materials. In an attempt to discuss the ramifications of
grain boundary deformation for the effective macroscopic
elastic response, we investigate one of the simplest con-
ceivable models of grain boundary excess elasticity. To
set the stage, we recall that 78 independent excess elastic
parameters can be identified for a linear elastic and oth-
erwise general deformable grain boundary [23]. Each of
these parameters may depend on the five crystallographic
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degrees of freedom of the boundary. It therefore appears
futile to attempt an experimental study of the complete
parameter space of grain boundary elasticity.
Among the various excess elastic constants, previous

studies of the impact of interfacial elasticity on the effec-
tive macroscopic elastic response of materials (cf. Ref.
[36] and references therein) have focused on only two,
which describe the response of the surface stress S to
the mean bulk strain E at the interface. The parame-
ters in question, the surface excess Lamé constants λS
and µS, were first defined more than three decades ago
by Gurtin and Murdoch [35] in their discussion of free
surfaces. Yet, there is so far no established experimen-
tal data base for λS and µS in any material. This sheds
doubt on the experimental significance of models of solid-
solid interfaces which focus on surface stress and ignore
the discontinuity tensor. In fact, atomistic studies point
at a different picture [8–10]. These studies highlight in-
plane shear softening as the dominant characteristics of
grain boundary local elastic behavior. The observation
suggests that a simple model may focus on the response
of slip to projected shear stress in the boundary plane.
With the above considerations in mind, we inspect

a toy model in which the excess elasticity of the grain
boundary is reduced to the following form:

[u] = kt , (38)

with

t = P ⋅ (jSo ⋅ n) , (39)

the projected mean shear traction in the boundary plane
and k a scalar slip compliance parameter. The defor-
mation mode comprises slip only, no stretch, and it is
thus volume-conserving. Furthermore, grain boundaries
are modeled here as isotropic in the plane. The implica-
tion is that grain boundaries slip in the direction of the
largest projected shear stress and by a distance that is
proportional to that stress.
In order to further simplify the discussion of the macro-

scopic elastic response of the polycrystalline solid, let us
assume that, on average, the local values of S and k along
the grain boundary network are not systematically cor-
related to each other or to the orientation of the grain
boundary normal in space. We can then take jSo = Sext

in Eq. (39) and derive the excess deformation by averag-
ing the discontinuity which ensues from Eq. (38) tensor
over all grain boundary orientations.

Here, as in other instances where the local stress or
strain are correlated with the orientation of the surface
or interface normal [32, 38], it is profitable to represent
the microstructural anisotropy through the interface ori-
entation distribution function [39], G(θ,φ). With the ori-
entation of n parameterized by the inclination (or colati-
tude), φ, and by the longitude, θ, the function G(φ, θ) is
defined so that–within the volume VB–the area of all seg-
ments of grain boundary with orientation between (φ, θ)
and (φ+δφ, θ+δθ) is given by δA = VBG(φ, θ) sinφδθδφ.

In terms of G, the integration in position space in ex-
pressions such as Eq. (13) can be converted into one in
orientation space, so that the contribution of the grain
boundary slip compliance to the macroscopic strain is
obtained as

Eslip = 1

VB
∫
G
D(x)dA

= ∫
Ω
D(φ, θ)G(φ, θ) sinφdθdφ . (40)

In general, the grain boundary orientation distribution
function can be anisotropic, for instance for the colum-
nar grain geometries typically found in vapor-deposited
thin films or for lamellar microstructures produced by
rolling. For simplicity, we here consider the case of an
isotropic grain geometry. Here, the orientation distribu-
tion function is a constant, G(φ,ψ) = α, with α = A/VB
the volume-specific grain boundary area.

As two specific stress states we consider a uniaxial
stress and a pure shear stress. For an orthonormal basis,
they can be expressed in matrix form as

S1 =
⎛
⎜
⎝

0 0 0
0 0 0
0 0 S1

⎞
⎟
⎠
, (41)

S2 =
⎛
⎜
⎝

0 0 0
0 0 S2

0 S2 0

⎞
⎟
⎠
. (42)

By means of illustration, let us evaluate the explicit
form of D(φ,ψ) for the uniaxial stress S1. Taking
n = (cos θ sinφ, sin θ sinφ, cosφ), and accounting for Eqs.
(10) and 38, we obtain

D = −kS1

⎛
⎜
⎝

cos2 θ cos2 φ sin2 φ cos θ sin θ cos2 φ sin2 φ 1
8
cos θ sin 4φ

cos θ sin θ cos2 φ sin2 φ sin2 θ cos2 φ sin2 φ 1
8
sin θ sin 4φ

1
8
cos θ sin 4φ 1

8
sin θ sin 4φ − cos2 φ sin2 φ

⎞
⎟
⎠
. (43)

Using this type of expression with Eq. (40), and adding
the bulk elastic response, the net effective strains for uni-
axial stress and for pure shear are obtained, respectively,

as

Eeff
1 =

S1

Y0

⎛
⎜
⎝

−ν0 0 0
0 −ν0 0
0 0 1

⎞
⎟
⎠
+ 2kS1α

15

⎛
⎜
⎝

− 1
2

0 0
0 − 1

2
0

0 0 1

⎞
⎟
⎠
,(44)

Eeff
2 = (

S2

2G0
+ kS2α

5
)
⎛
⎜
⎝

0 0 0
0 0 1
0 1 0

⎞
⎟
⎠
, (45)
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where Y0, G0, and ν0 denote the Young modulus, shear
modulus and Poisson number, respectively, of the bulk
solid.
It is also of interest to compute the root-mean square

slip magnitudes, τ . For the two loading modes these are
obtained, respectively, as

τ1 =
√

2

15
kS1 , τ2 =

√
2

5
kS2 . (46)

This means that the extra strains can simply be written
as

Eslip
1 =

√
6

5

τ1
L

⎛
⎜
⎝

− 1
2

0 0
0 − 1

2
0

0 0 1

⎞
⎟
⎠
, (47)

Eslip
2 = 3√

10

τ2
L

⎛
⎜
⎝

0 0 0
0 0 1
0 1 0

⎞
⎟
⎠
, (48)

Since the numerical factors are close to unity, the two last
equations agree closely with what is found for the brick
model of Fig. 1. In Eq. (47) we have used the relation
between the grain size, L, and the specific grain boundary
area, L = 3/α for idealized grains with a spherical shape.
Let us now present the resulting equations for the ef-

fective values of Y , G, and ν:

Y eff = 15Y0
15 + 2kY0α

≈ Y0 (1 −
2

15
kY0α) (49)

Geff = 5G0

5 + 2kG0α
≈ G0 (1 −

2

5
kG0α) (50)

νeff = 15ν0 + kY0α
15 + 2kY0α

≈ ν0 +
1

15
kY0α (1 − 2ν0) (51)

where the terms on the very right-hand side are series
expansions around α = 0 to first order in α.
As an insight from the toy model, we advertise that

Eq. (44) attributes a Poisson ratio νslip = 1/2 to the ex-
tra strain due to grain boundary slip. This is not surpris-
ing, since the neglect of stretch in our toy model implies
that we consider a volume-conserving deformation mode.
Since the bulk deformation of real materials has ν0 < 1/2,
the model thus implies that slip-controlled grain bound-
ary deformation brings an increase in Poisson ratio with
decreasing grain size. The same reasoning also implies
that the effective bulk modulus, Keff , is here indepen-
dent of the grain size,

Keff =K0 . (52)

These simple observations may be checked against ex-
perimental data for the size-dependent elastic moduli of
nanocystalline metals. Such data has recently been re-
ported by Grewer et al. for nanocrystalline Pd, Ref.
[7]. We shall now inspect their results in the light of
our model.

B. Comparison to experiments with nanocystalline
Palladium

The data in Ref. [7] was obtained with materials pre-
pared by in-situ consolidation of nanoscale clusters in
an ultrahigh vacuum environment (inert-gas condensa-
tion technique, igc). In that study, the effective elastic
constants of the bulk samples were determined by an ul-
trasound pulse-echo method. This was done in-situ in
an x-ray powder diffractometer, with the grain size de-
termined from the Bragg reflection broadening. The ex-
periment took several days, while the microstructure was
evolving by room-temperature grain growth.

Nanocrystalline Pd prepared by igc may be approxi-
mated as an isotropic material, free of crystallographic
texture and with an isotropic grain boundary orienta-
tion distribution function [7]. The effective macroscopic
elastic response is therefore represented by two indepen-
dent elastic parameters, for instance any pair of values
chosen from Y eff , Geff , Keff , and νeff . As its data base,
the experiment in Ref. [7] exploits the longitudinal and
transverse sound velocities at each grain size. The es-
tablished equations for the sound velocity in elastically
isotropic continua afford a computation of the effective
macroscopic elastic constants. Here we use this data for
comparison to our model, and we ignore the decomposi-
tion into bulk and interface elastic behavior of Ref. [7].
Compared to the present approach, the decomposition
in Ref. [7] rests on a different description, which mod-
els interfaces as three-dimensional slabs of material with
independent bulk elastic constants, cf. for instance Ref.
[37]. Much can be said for and against each of the two
approaches, but we here dwell on a description of in-
terfaces in terms of a two-dimensional manifold if only
due to the natural incorporation of the anisotropy of the
in-plane (sliding) and out-of-plane (stretch) deformation
behavior.

Figure 5 shows the effective elastic constants Y eff , Geff ,
Keff , and νeff that are obtained from the experimental ul-
trasound data of Ref. [7] [40]. It is immediately obvious
that the bulk modulus is indeed much less dependent on
grain size than the remaining parameters, as predicted
by the model of Section V A. It is also seen that the
prediction of an increase in Poisson ratio at small size
is indeed born out by the data. This suggests that the
toy model catches essential characteristics of the grain
boundary elastic response and of its impact on the effec-
tive elasticity of nanoscale solids.

For not too large α, all elastic parameters vary linearly
with α. We have fitted the data points in the interval of
linear behavior, α < 0.33nm−1, by straight lines. The
coefficients from these four independent straight-line fits
are given in Table 1. The extrapolation to α = 0 pro-
vides bulk elastic parameters Y0, G0, K0 and ν0 in good
agreement with reported values.

In order to test the toy model, we have performed a
second fit procedure. Here, the data for the α-dependece
of the experimental effective elastic parameters is fitted



9

FIG. 5. Effective macroscopic elastic constants of nanocrystalline Pd, plotted versus the volume-specific grain boundary area, α.
Y eff , Geff , Keff , and νeff denote the effective Youngs modulus, shear modulus, bulk modulus and Poisson number, respectively.
Circles, experimental data from the study in Ref. [7] [40]. Dashed lines, best straight-line fit to the experiment in the interval
of linear behavior, 0.066nm−1 < α < 0.33nm−1. Solid lines, fit with the linearized variant of Eqs. (49-51), using the ordinate
intercepts of the straight-line fits (asterisks) for the values of the bulk elastic constants and using the sliding compliance, k,
as the single adjustable parameter. The identical value, k = 18.0 pm/GPa, is used to fit all three elastic constants. Note the
excellent agreement, supporting the model of an excess compliance that is exclusively due to grain boundary sliding deformation.

TABLE I. Elastic constants and dependence on the specific
grain boundary area, α. X0 and ∂Xeff/∂α∣exp are the ordinate
intercepts and slopes, respectively, of the straight-line fits to
the experimental data in Fig. 5. ∂Xeff/∂α∣fit denotes the
predicted slope based on Eqs. (49-51), using the X0 from the
Table and the value k = 18.0 pm/GPa for the excess sliding
compliance, k, as the single adjustable parameter. Note the
excellent agreement between the experimental slopes and the
value from Eqs. (49-51).

X X0 ∂Xeff/∂α∣exp ∂Xeff/∂α∣fit
Y 129±2GPa -41±9 N/m -40 N/m
G 46.5±0.7 GPa -16±1 N/m -16 N/m
K 191±5 GPa -15±26 N/m 0
ν 0.3895±0.0006 +34±3 pm +34 pm

by the linearized variant of Eqs. (49-51), using the bulk
elastic parameters from the straight-line fits and treating
the slip compliance, k, as the single adjustable parame-
ter. The fit is here simultaneous to all four graphs in Fig.
5, with the identical value of k in each case. The excellent
agreement (cf. Figure 5 and Table 1) is a nontrivial find-
ing, since two independent elastic parameters are fitted
with the single free parameter k. The agreement pro-
vides strong support for modeling the excess compliance
by a volume-conserving process, such as our toy model
of pure slip deformation.

The value of the slip compliance from the fit is k = 18.0
pm/GPa. This implies that a projected shear stress of 1
GPa leads to a slip distance of 18 pm. The exact stress
amplitude of the ultrasound experiment is unknown, but
it is conservative to assume that it is well below the yield
stress of the coarsest-grained samples and thus much
smaller than 100 MPa. This implies less than 2pm slid-
ing amplitude. The value is thus less than 1% of an
interatomic distance, putting the slip deformation in the
experiment well into the elastic regime.

VI. SUMMARY AND CONCLUSIONS

The findings of this study can be summarized as fol-
lows:

� Grain boundary slip and grain boundary stretch
enter the kinematics of deformation as the tangen-
tial and normal part of a displacement jump vector,
[u], that measures the relative displacement of the
two crystals abutting at a grain boundary.

� The most relevant quantity for the macroscopic de-
formation is not [u] but its Kronecker product,
[u] ⊗ n, with the grain boundary normal, n. Fur-
thermore, the impact of the grain-boundary me-
diated processes on the macroscopic strain is gov-
erned by the symmetric part of the second rank
tensor [u] ⊗ n. We have termed that quantity the
discontinuity tensor, D.

� The effective macroscopic deformation of a poly-
crystalline body depends on the local grain bound-
ary deformation via the sum over the mean discon-
tinuity tensors of the boundaries, weighted by the
respective grain boundary area. For given mag-
nitudes of D, the macroscopic strain scales with
the net grain boundary area per volume or – for
equiaxed grain structures – with the inverse grain
size.

� In general, grain boundary sliding and stretch lead
to incompatibilities of deformation at triple junc-
tions. These incompatibilities require accommoda-
tion, for instance by elastic deformation or by dislo-
cation plasticity in the bulk crystal lattices. When
the elastic behavior in the bulk is linear, then the
relevant elastic deformation does not significantly
contribute to the macroscopic strain.
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� Dislocation plasticity can be treated in a closely
analogous picture. Whereas grain boundary plas-
ticity involves changes, δDgb, in the grain boundary
discontinuity tensor on pre-existing internal inter-
faces of constant area, dislocation plasticity in the
bulk crystal lattice involves the generation of new
surface suffering a displacement jump that is de-
termined by the constant value, Ddis, of the discon-
tinuity tensor associated with the relevant disloca-
tion event. Thus, conceptually, the net macroscopic
strain due to a small change in the deformation
variables can be written as

δEeff = ⟨δE⟩B +
1

VB
∑
l

Alδ⟨Dgb⟩l

+ 1

VB
∑
m

Ddis
m δAm . (53)

� The discontinuity tensor associated with disloca-
tion plasticity in the bulk is the symmetric part of
the Kronecker product of Burgers vector, b, and
the normal of the glide or climb plane. This lat-
ter quantity is parallel to the cross product, l × δs,
of line vector l and dislocation displacement vector
δs.

� For reversible processes, the energy-conjugate
quantity to the discontinuity tensor can be approx-
imated as the mean, jSo, of the bulk stresses on
the two sides of the interface. Thus, varying D re-
versibly changes the interfacial free energy density,
ψ, by δψ ≈ jSo ∶ δD. More generally, jSo ∶ δD mea-
sures the total (reversible and irreversible) work of
deformation. A similar expression for dislocation
plasticity and Ddis is consistent with the work done
against the Peach-Köhler force.

� As an example for the application of our theory to
experiment, we have studied a toy model for the
elastic response of nanocrystalline materials. As-
suming an excess compliance which is dominated
by grain boundary slip, we have derived expressions
for the variation of the effective macroscopic elas-
tic response with the grain size. The predictions
of an increase in Poisson ratio at small size and
of essentially constant compressibility compare well
to experimental data for nanocrystalline Pd. This
supports the conclusion of shear softening at grain
boundaries [7] and rules out artifacts from poros-
ity in that study, since pores would increase the
compressibility and, therewith, the Poisson ratio.

Since our analysis does not allow for grain boundary
migration, the phenomenon of coupled motion (cf. the
introduction) is not appropriately described here. An ex-
tension would incorporate the coupling between the grain
boundary slip vector and a displacement of the boundary
plane along its normal. Besides the direct contribution of
slip to the discontinuity tensor – as treated in our analysis

– the boundary migration leads here to an extra contri-
bution to D. We expect that this contribution emerges as
the product of jump in the strain tensor at the interface
and the volume swept by the segment of boundary when
it migrates. However, the analysis is beyond the scope of
the present work and awaits a dedicated study.

There are various scenarios in atomistic simulation and
experiment that allow the grain-boundary mediated de-
formation of our analysis to be quantified. Molecular
dynamics studies of the mechanical response of nanocrys-
talline solids to external load supply displacement fields
atom by atom. In a suitably coarse-grained description
one can determine the limiting values of the displacement
fields on both sides of a grain boundary, similar to what
is shown in Fig. 3. In principle, this allows the grain
boundary sliding and stretch – and, thereby, D – to be
extracted everywhere in the network of grain boundaries.
It is also well established that the elastic strain field in
the bulk [41] and the net deformation by bulk dislocation
activity [6, 21] can be quantified in atomistic simulation,
as can the external deformation. Thus, atomistic studies
supply all parts of Eq. (53), affording a verification as
well as a separate quantification of the individual defor-
mation modes.

In experiment, the grain boundary mediated deforma-
tion is most readily accessed when the load is sufficiently
small to prevent dislocation activity in the bulk. The
bulk deformation is then entirely due to elastic strain.
The mean of the bulk elastic strain can be quantified us-
ing lattice parameter data from in-situ diffraction exper-
iments [42–46], which can also be combined with macro-
scopic strain measurement [44, 46]. This is similar to a
Simmons-Baluffi [47] type experiment, except that the
strain difference is here due to grain boundary defor-
mation rather than vacancy generation. An example is
the investigation of different strain measures during hy-
drogen absorption in nanocrystalline Pd (free of load)
[26, 48]. The significant difference in macroscopic strain
versus mean lattice strain provides a quantitative mea-
sure for the mean stretch due to hydrogen enrichment or
depletion in grain boundaries.

In studies of nanomaterial deformation under load, lat-
tice parameter data in the nominally elastic regime is
available [42, 44–46]. Deviations between the mean lat-
tice parameter change – which measures the bulk strain –
and the macroscopic strain would indicate grain bound-
ary mediated deformation.

In conclusion, therefore, we believe that the contribu-
tion of grain boundary slip to the macroscopic deforma-
tion of nanocrystalline solids is of sufficient importance to
require quantification. The results of the present paper
provide a theoretical frame for using results of atomistic
simulation or experiment in accomplishing this task.

Acknowledgement: This study was supported by
Deutsche Forschungsgemeinschaft (Forschergruppe 714
”Plastizität in Nanomaterialien”).
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Appendix A: Tensor notation

LetA denote a symmetric second rank tensor, B a gen-
eral second rank tensor, and c, d vectors. We denote the
Kronecker product, an inner product, and the dot prod-
uct by ⊗, ∶ and ⋅, respectively. In component notation for
an orthonormal basis, (c ⊗ d)ij = cidj , A ∶ B = AijBij ,
(c ⋅ d) = cidi, and (B ⋅ c)i = Bijcj with summation con-
vention applied.
The following identities hold:

(c⊗ d) ∶A = (d⊗ c) ∶A = c ⋅A ⋅ d (A1)

and

tr(c⊗ d) = c ⋅ d . (A2)

Furthermore, with n a unit vector, U the unit tensor in
three dimensional space, and with P = U − n ⊗ n the
projection tensor for the surface with normal n, we have

(c⊗ n) ⋅ n = c , (A3)

n ⋅ (n⊗ c) ⋅ n = n ⋅ c , (A4)

P ⋅ (n⊗ c) ⋅ n = 0 . (A5)

Appendix B: Peach-Köhler force

Consider a small test volume T which contains disloca-
tion line segmentsm and which is loaded on its periphery
by the uniform stress S. When the dislocations move, the

work done against S is (cf. Eq. (18))

δW = VTS ∶ δEeff . (B1)

By using first Eq. (37) and then Eq. (36), this expression
is transformed into

δW = S ∶∑
m

DmδAm (B2)

and then

δW = S ∶ 1
2
∑
m

[bm ⊗ (dlm × δsm) + (dlm × δsm)⊗ bm] .

(B3)
Since S is symmetric, we can equivalently write

δW = S ∶∑
m

bm ⊗ (dlm × δsm) , (B4)

and apply Eq. (A1) to obtain

δW =∑
m

bm ⋅ (S ⋅ (dlm × δsm)) . (B5)

Equation (B5) agrees with the expression by Peach and
Köhler for the work done by the uniform stress S on a
set of moving dislocations [33]. The agreement confirms
that the work done against the dislocation discontinuity
tensor is identical with the work done against the Peach-
Köhler force. This verifies the incorporation of disloca-
tion plasticity into the formalism of the present work.
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